Entanglement Generation in Uncertain Quantum Systems Using Sampling-Based Learning Control
نویسندگان
چکیده
In this paper, we develop a control algorithm to generate entanglement in a quantum system with uncertainties. The system under consideration is an uncertain system of two twolevel atoms interacting with each other through a dipole-dipole interaction. The sampling-based learning control (SLC) strategy is employed to find a control law. An SLC strategy contains two steps of training and evaluation. In the training step, we obtain several samples to construct an augmented system by sampling the uncertainties according to a possible distribution of the uncertainty parameters and learn an optimal control law by maximizing the performance index. In the evaluation step, we apply the obtained control law from the training step to additional samples through randomly sampling the uncertainties. Numerical results are presented showing the success of the SLC method in control design for generating entanglement.
منابع مشابه
Adaptive Approximation-Based Control for Uncertain Nonlinear Systems With Unknown Dead-Zone Using Minimal Learning Parameter Algorithm
This paper proposes an adaptive approximation-based controller for uncertain strict-feedback nonlinear systems with unknown dead-zone nonlinearity. Dead-zone constraint is represented as a combination of a linear system with a disturbance-like term. This work invokes neural networks (NNs) as a linear-in-parameter approximator to model uncertain nonlinear functions that appear in virtual and act...
متن کاملدرهمتنیدگی کوانتومی و گذار فاز کوانتومی تحت اتلاف در مدل ناهمسانگرد هایزنبرگ XXZ با برهمکنش ژیالوسینکی - موریا
Because the key issue in quantum information and quantum computing is entanglement, the investigation of the effects of environment, as a source of quantum dissipation, and interaction between environment and system on entanglement and quantum phase transition is important. In this paper, we consider two-qubit system in the anisotropic Heisenberg XXZ model with the Dzyaloshinskii-moriya inter...
متن کاملCoherent Control of Quantum Entropy via Quantum Interference in a Four-Level Atomic System
The time evaluation of quantum entropy in a four-level double- type atomic system is theoretically investigated. Quantum entanglement of the atom and its spontaneous emission fields is then discussed via quantum entropy. It is found that the degree of entanglement can be increased by the quantum interference induced by spontaneous emission. The phase dependence of the atom-field entanglement is...
متن کاملDesigning a quantum genetic controller for tracking the path of quantum systems
Based on learning control methods and computational intelligence, control of quantum systems is an attractive field of study in control engineering. What is important is to establish control approach ensuring that the control process converges to achieve a given control objective and at the same time it is simple and clear. In this paper, a learning control method based on genetic quantum contr...
متن کاملStable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems
Rough extreme learning machines (RELMs) are rough-neural networks with one hidden layer where the parameters between the inputs and hidden neurons are arbitrarily chosen and never updated. In this paper, we propose RELMs with a stable online learning algorithm for the identification of continuous-time nonlinear systems in the presence of noises and uncertainties, and we prove the global ...
متن کامل